Find the general solution of each of the following differential equations.

1. \(y'' + y' - 6y = 0. \)

This is a homogeneous second order differential equation with constant coefficients. The corresponding characteristic equation is

\[p^2 + p - 6 = 0, \]

which has two solutions \(p = -3 \) and \(p = 2. \) Hence the general solution is

\[y = Ae^{-3x} + Be^{2x}. \]

2. \(y'' + 8y = 0. \)

This is a homogeneous second order differential equation with constant coefficients. The corresponding characteristic equation is

\[p^2 + 8 = 0, \]

which has two solutions \(p = 2\sqrt{2}i \) and \(p = -2\sqrt{2}i. \) Hence the general solution is

\[y = Ae^{2\sqrt{2}ix} + Be^{-2\sqrt{2}ix}. \]

3. \(y'' + 2y' + 3y = 0. \)

This is a homogeneous second order differential equation with constant coefficients. The corresponding characteristic equation is

\[p^2 + 2p + 3 = 0, \]

which has two solutions \(p = -1 - \sqrt{2}i \) and \(p = -1 + \sqrt{2}i. \) Hence the general solution is

\[y = Ae^{(-1-\sqrt{2}i)x} + Be^{(-1+\sqrt{2}i)x}. \]

4. \(y'' + 3y' - 10y = 6e^x. \)

This is a second order differential equation with constant coefficients. The corresponding homogeneous equation is

\[y'' + 3y' - 10y = 0. \]
The characteristic equation of the homogeneous equation is

\[p^2 + 3p - 10 = 0, \]

which has two solutions \(p = -5 \) and \(p = 2 \). Hence the general solution of the homogeneous equation is

\[y_h = Ae^{-5x} + Be^{2x}. \]

We look for a particular solution of the original equation, of the form \(y_p = Ce^x \). Then

\[y_p'' + 3y_p' - 10y_p = -6Ce^x. \]

Hence,

\[-6Ce^x = 6e^x. \]

Thus, \(C = -1, \ y_p = -e^x \) and therefore the solution of our equation is

\[y = Ae^{-5x} + Be^{2x} - e^x. \]

5. \(y'' + 3y' - 10y = 6e^{4x} \).

This is a second order differential equation with constant coefficients. The corresponding homogeneous equation is

\[y'' + 3y' - 10y = 0. \]

The general solution of the homogeneous equation is

\[y_h = Ae^{-5x} + Be^{2x}. \]

We look for a particular solution of the original equation, of the form \(y_p = Ce^{4x} \). Then

\[y_p'' + 3y_p' - 10y_p = (16C + 12C - 10C)e^x = 18Ce^{4x}. \]

Hence,

\[18Ce^{4x} = 6e^{4x}. \]

Thus, \(C = \frac{1}{3}, \ y_p = \frac{1}{3}e^{4x} \) and therefore the solution of our equation is

\[y = Ae^{-5x} + Be^{2x} + \frac{1}{3}e^{4x}. \]

6. \(y'' + y = 2\cos(x) \).

The solution of the homogeneous equation

\[y'' + y = 0 \]
is

\[y_h = Ae^{ix} + Be^{-ix}. \]

Since

\[\cos''(x) + \cos(x) = 0, \]

we look for the particular solution of the form

\[y_p = x(\cos(x) + \sin(x)). \]

Then

\[y_p' = \cos(x) + \sin(x) + x(-\sin(x) + \cos(x)), \]
\[y_p'' = 2(-\sin(x) + \cos(x)) + x(-\cos(x) - \sin(x)), \]
\[y_p'' + y_p = 2(-\sin(x) + \cos(x)). \]

Thus

\[2(-\sin(x) + \cos(x)) = 2\cos(x). \]

Hence, \(a = 0 \) and \(b = 1 \). Therefore \(y_p = x\sin(x) \). The general solution of the original equation is

\[y = Ae^{ix} + Be^{-ix} + x\sin(x). \]

7. \(y'' + y' = 10x^4 + 2. \)

The corresponding homogeneous equation is

\[y'' + y' = 0. \]

The characteristic equation

\[p^2 + p = 0 \]

has two solutions \(p = 0 \) and \(p = -1 \). Hence the solution of the homogeneous equation is

\[y_h = A + Be^{-x}. \]

We look for a particular solution of the form \(y_p = x(Ax^4 + Bx^3 + Cx^2 + Dx + E) = Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex \). Then

\[y_p' = 5Ax^4 + 4Bx^3 + 3Cx^2 + 2Dx + E, \]
\[y_p'' = 20Ax^3 + 12Bx^2 + 6Cx + 2D, \]
\[y_p'' + y_p' = 5Ax^4 + (20A + 4B)x^3 + (12B + 3C)x^2 + (6C + 2D)x + 2D + E. \]

Hence,

\[10 = 5A, \]
\[0 = 20A + 4B, \]
\[0 = 12B + 3C, \]
\[0 = 6C + 2D, \]
\[2 = 2D + E. \]
Thus
\[y_p = 2x^5 - 10x^4 + 40x^3 - 120x^2 + 242x, \]
so that
\[y = A + Be^{-x} + 2x^5 - 10x^4 + 40x^3 - 120x^2 + 242x. \]

8. \(y'' - 2y' + y = 6e^x. \)

The corresponding homogeneous equation is
\[y'' - 2y' + y = 0. \]

The characteristic equation
\[p^2 - 2p + 1 = 0 \]
has one solution \(p = 1. \) Hence the solution of the homogeneous equation is
\[y_h = Ae^x + Bxe^x. \]

We look for a particular solution of the form \(y_p = Cx^2e^x. \) Then
\[y'_p = 2Cxe^x + Cx^2e^x, \]
\[y''_p = 2Ce^x + 4Cxe^x + Cx^2e^x, \]
\[y''_p - 2y'_p + y_p = 2Ce^x. \]

Hence,
\[C = 3. \]

Thus
\[y_p = 3x^2e^x, \]
so that
\[y = Ae^x + Bxe^x + 3x^2e^x. \]