1. Introduction. Let $G, G' \subseteq Sp(W)$ be a reductive dual pair of type I; see [H2]. Thus, there is a division algebra $D = (\mathbb{R}, \mathbb{C}, H)$ with an involution over \mathbb{R}, two finite-dimensional vector spaces over D, V and V' equipped with non-degenerate forms (\cdot, \cdot) and $(\cdot, \cdot)'$, respectively—one hermitian and the other skew-hermitian. The groups G, G' are the isometry groups of the forms $(\cdot, \cdot), (\cdot, \cdot)'$, respectively. Let W denote the vector space $W = \text{Hom}(V', V)$. A symplectic form on W is defined by

$$\langle w, w' \rangle = \text{tr}_{D/\mathbb{R}}(ww'^*) \quad (w, w' \in W),$$

where the map $\text{Hom}(V', V) \ni w \mapsto w^* \in \text{Hom}(V, V')$ is defined by

$$\langle w(v'), v \rangle = \langle v', w^*(v) \rangle' \quad (w \in W, v \in V, v' \in V').$$

The groups G and G' act on W via postmultiplication and premultiplication by the inverse, respectively. These actions embed G and G' into the symplectic group $Sp(W)$.

Let \tilde{Sp} denote the metaplectic group, and let \tilde{G}, \tilde{G}' be the preimages of G, G' under the covering map $\tilde{Sp} \rightarrow Sp$. The duality theorem of Howe [H3] states that there is a bijection $\Pi \leftrightarrow \Pi'$ between certain irreducible admissible representations of \tilde{G} and \tilde{G}'.

Recall the unnormalized moment maps

$$\tau_g : W \ni w \mapsto ww^* \in g, \quad \tau_{g'} : W \ni w \mapsto w^*w \in g'.$$

In the early 1980s, Howe conjectured that the wave-front sets of Π and Π' are related to the geometry of moment maps in some nice way.

Conjecture (Howe). For a generic pair (Π, Π') occurring in Howe's correspondence,

$$WF(\Pi') = \tau_{g'}(\tau_g^{-1}(WF(\Pi))).$$

Received 4 January 1995. Revision received 12 April 1995.
Przebinda's research was partially supported by National Science Foundation grant DMS 9204488.
The equality (1.4) was proven in [P. 7.10] under a very strong assumption that the pair G, G' is in the stable range, with G the smaller member, and that the representation Π is unitary and finite-dimensional.

In this paper, we propose another approach towards a proof of the conjecture (1.4). Let Θ_Π denote the (distribution) character of Π, and let u_Π be the lowest term in the asymptotic expansion of Θ_Π at the identity, as defined in [BV]. Similarly, we have $\Theta_{\Pi'}$ and $u_{\Pi'}$. We would like to state a conjecture relating u_n and $u_{n'}$ to the geometry of moment maps. Before we do it, we need some preparation.

In [H1], Howe has deduced from Witt's theorem the following.

Theorem 1.5. There is an open dense $G \cdot G'$-invariant subset $W_{\text{max}} \subseteq W$ such that for every orbit $\mathcal{O} \subseteq \tau_g(W_{\text{max}})$, the set $\mathcal{O}' = \tau_g(\tau_g(\mathcal{O}) \cap \mathcal{O})$ is a single G' orbit.

The set W_{max} is not unique, of course. In this paper, we assume that the pair G, G' is in the stable range, with G the smaller member. This means that V' has an isotropic subspace of dimension greater than or equal to the dimension of V. We shall prove the following.

Theorem 1.6. There is an affine section $\sigma_g : g \to W$ to the map τ_g, a function $m(z, g')$ on $g \times G'$ and a (singular) measure μ on G' such that

\[\int_W \phi(w) \, dw = \int_g \int_{G'} \int_g \phi(g \cdot \sigma_g(z) \cdot g'^{-1}) \, dg \, m(z, g') \, d\mu(g') \, dz \quad (\phi \in C_c(W)), \]

and if $\psi : g' \to \mathbb{C}$ is a continuous and rapidly decreasing function, then so is

\[\mathcal{A} \psi(z) = \int_{G'} \psi \circ \tau_g(\sigma_g(z) \cdot g'^{-1}) m(z, g') \, d\mu(g') \quad (z \in g). \]

Theorem 1.5 holds for the set $W_{\text{max}} = \{ g \cdot \sigma_g(z) \cdot g' \mid g \in G, z \in g, g' \in G' \}$. Furthermore, if ψ is smooth and $\text{supp} \, \psi \cap \tau_g(W_{\text{max}})$ is compact, then $\mathcal{A} \psi \in S(g)$, the Schwartz space of g.

For an explicit formulation, see (2.24), (2.25), (3.15), and (3.16). The case $G = Sp_{p,q}, G' = O_{-2n}$ can be treated similarly, and it is left to the reader.

Let μ_0 be the canonical invariant measure on a G-orbit $\mathcal{O} \subseteq \mathfrak{g}$. Then by [RR], μ_0 can be integrated against any rapidly decreasing function on \mathfrak{g}. Thus, in view of the above, we may define a measure $\mathcal{A} \mu_0$ on g' by

\[\mathcal{A} \mu_0(\psi) = \mu_0(\mathcal{A} \psi), \]

where ψ is a rapidly decreasing function on g'. It will be clear from Theorem 1.6 and from the following construction that the measure $\mathcal{A} \mu_0$ is invariant and is supported on the closure of \mathcal{O}'.
THEOREM 1.7. With the above notation, we have $\mathcal{M}_0 = \text{const} \cdot \mu_{g'}$, where const > 0 and g' is the G'-orbit corresponding to \mathcal{O} via the Howe-Witt theorem (Theorem 1.5).

Let $\kappa(\ ,\)$ denote the Killing form on g and define a Fourier transform by

$$\hat{\psi}(x) = \int_g \psi(y) e^{i\kappa(x, y)} \, dy \quad (\psi \in S(g), x \in g).$$

Let $\mu_{g'} \in S^*(g)$ denote the Fourier transform of $\mu_{g'}$. By Harish-Chandra, this distribution coincides with a function $\mu_{g'}(z), z \in g'$; see [W, 8.3.5]. Similarly, we have $\mu_{g'}(z'), z' \in g'$. By combining (1.6) and (1.7) with the fact that $\mu_{g'}$ is absolutely integrable against any Schwartz function, we deduce the following theorem.

THEOREM 1.8. There is a constant const > 0 such that for $\psi \in S(g)$ with supp $\hat{\psi} \cap \tau_{\psi}(W^{\text{max}})$ compact

$$\mu_{g'}(\psi) = \int_{g'} \psi(z') \mu_{g'}(z') \, dz' = \text{const} \int_g (\mathcal{M}(\hat{\psi}))(z) \mu_{g'}(z) \, dz,$$

where the integrals are absolutely convergent.

Now we can state our conjecture.

CONJECTURE. There is a constant const > 0, depending only on normalization of the Lebesgue measure on g', such that

$$\tag{1.9} \mu_{\Pi'} = \mathcal{M}_0 \mu_{\Pi},$$

where μ_{Π} stands for the complex conjugate of the function μ_{Π}.

Thanks to [R] and Theorems 1.5, 1.7, and 1.8, equation (1.9) would imply (1.4). Recently, we have proved that (1.9) holds in the "deep stable range" (see [DP]), where we can compute the distribution character of Π' from that of Π. Although proving the conjecture in the general situation is at present more a matter of hard work than insight, a proof has not yet been written down.

2. The case when $(\ ,\)$ is hermitian. In this section, D is equipped with an involution $D \ni a \to \bar{a} \in D$, which is trivial only if $D = \mathbb{R}$. Let $M_{m,n}(D)$ denote the set of matrices with m rows and n columns and with entries from D. Let $M_n(D) = M_{n,n}(D)$ and let $D^n = M_{1,1}(D)$. We view D^n as a left vector space over D by the following formula

$$av = v \cdot \bar{a} \quad (a \in D, v \in D^n).$$

Each matrix $F \in M_n(D)$ acts on D^n via left multiplication. Thus, $M_n(D)$ may be identified with $\text{End}_D(D^n)$. Since $R \subseteq D$, D^n may be viewed as a real vector space,
and we have an obvious inclusion $\text{End}_R(D^n) \subseteq \text{End}_R(D^n)$. For $F \in M_n(D)$, let $\det_R(F)$ denote the determinant of F viewed as an element of $\text{End}_R(D^n)$.

For two positive integers $d' \geq 2d$, set $V = D^d$ and $V' = D^{d'}$. Fix a matrix $F \in M_d(D)$ such that $F = -F^t$ and $|\det_R(F)| = 1$. Let

$$F' = \begin{pmatrix} 0 & 0 & I_d \\ 0 & F'' & 0 \\ I_d & 0 & 0 \end{pmatrix}, \quad F'' = \begin{pmatrix} I_{p'} & 0 \\ 0 & -I_{q'} \end{pmatrix},$$

$$2d + p' + q' = d', \quad p = p' + d, \quad q = q' + d.$$

Set

$$(2.1) \quad (u, v) = \overline{u}^t F v, \quad (u', v')' = \overline{u}^t F' v' \quad (u, v \in V, u', v' \in V').$$

Then (\cdot, \cdot) is a nondegenerate skew-hermitian form on V and $(\cdot, \cdot)'$ is a nondegenerate hermitian form on V' of signature p, q. The corresponding isometry groups and Lie algebras can be represented in terms of matrices as follows:

$$G = \{ g \in M_d(D); \overline{g}^t F g = F \}, \quad g = \{ z \in M_d(D); \overline{z}^t F + F z = 0 \},$$

$$G' = \{ g \in M_{d'}(D); \overline{g}^t F' g = F' \}, \quad g' = \{ z \in M_{d'}(D); \overline{z}^t F' + F' z = 0 \}.$$

Let $W = M_{d,d'}(D)$. This is a symplectic space over R with the symplectic form defined in terms of the forms (2.1) as in (1.1). Let $L' = \{ g \in G'; \overline{g}^t g = I_{d'} \}$. This is a maximal compact subgroup of G'. The centralizer of L' in $\text{Sp}(W)$ is isomorphic to $L = G \times G$. Let $l = g \oplus g$. Then we have the moment maps $\tau_g: W \to g$, $\tau_g': W \to g'$ and $\tau_l: W \to l$ given explicitly by

$$\tau_g(w) = w F' \overline{w}^t F, \quad \tau_g'(w) = ((w \overline{w}^t + w F' \overline{w}^t) F, -(w \overline{w}^t - w F' \overline{w}^t) F),$$

$$(2.2) \quad \tau_l(w) = F' \overline{w}^t F w \quad (w \in W).$$

(These maps τ_g, τ_g', τ_l are essentially determined by the fact that they are constant on the G', G, L' orbits in W, respectively.) We shall view W as a direct sum

$$(2.3) \quad W = M_d(D) \oplus M_{d',d'-2d}(D) \oplus M_d(D),$$

where each $w \in W$ is written as $w = (a, b, c)$, $a \in M_d(D)$, $b \in M_{d',d'-2d}(D)$, $c \in M_d(D)$. In terms of (2.3), define an affine map $\sigma_g: g \to W$

$$(2.4) \quad \sigma_g(z) = \left(\frac{1}{2} z, 0, -F^{-1} \right) \quad (z \in g).$$

We shall see in (2.7) that this is a section to the map τ_g.

We shall identify the general linear group $GL(V)$ with a subgroup of G' by the following injective group homomorphism

$$
(2.5) \quad \text{GL}(V) \ni g \to \begin{pmatrix} g & 0 & 0 \\ 0 & I_{d-2d} & 0 \\ 0 & 0 & (\bar{g}^{-1})^{-1} \end{pmatrix} \in G'.
$$

Then for $g \in \text{GL}(V)$ and $z \in g$

$$
(2.6) \quad g(\sigma_g(z)) = \sigma_g(z) \cdot g^{-1} = \left(\frac{1}{2} zg^{-1}, 0, -F^{-1}\bar{g} \right)
$$

and

$$
\tau_g(g(\sigma_g(z))) = z
$$

$$
(2.7) \quad \tau_g(\sigma_g(z)) = \begin{pmatrix} \frac{1}{2} zg^{-1} & 0 & -gF^{-1}\bar{g} \\ 0 & 0 & 0 \\ \frac{1}{4}(\bar{g}^{-1})^{-1}z^tFzg^{-1} & 0 & -\frac{1}{2}(\bar{g}^{-1})^{-1}z^t\bar{g} \end{pmatrix}.
$$

Before proceeding any further, we make the following observation. With the notation of (2.7), let $S = zF^{-1}$ and let $T = (\bar{F}^{-1})\bar{g}^tF^{-1}$. Then

$$
(2.8) \quad \tau_g(\sigma_g(z)) = \left(\begin{pmatrix} S & T \end{pmatrix} + S \right)F, -\left(\begin{pmatrix} S & T \end{pmatrix} - S \right)F.
$$

Let $\mathcal{H} = \{ S \in M_d(D); S = \bar{S} \}$ be the space of hermitian matrices of size d. Let $\mathcal{H}^+ = \{ S \in \mathcal{H}; S > 0 \}$ be the subset of positive definite matrices. For $S \in \mathcal{H}$, let $\mathcal{H}_S^+ = \{ T \in \mathcal{H}^+; T > (1/4)ST^{-1}S \}$, and let $\mathcal{H}_\pm^+_S = \{ P \in \mathcal{H}^+; P \pm S > 0 \}$.

Lemma 2.9. Fix $S \in \mathcal{H}$. Then the map

$$
\mathcal{H}_S^+ \ni T \to \frac{1}{4}ST^{-1}S + T \in \mathcal{H}_\pm^+_S
$$

is a bijection.
Proof. Suppose first that \(d = 1 \) and \(D = R \). Then the above statement means that for any \(s \in R \), the map

\[
\left(\frac{1}{2} |s|, +\infty \right) \ni t \mapsto \frac{1}{4} s^2 t^{-1} + t \in (|s|, +\infty)
\]

is a bijection. This is elementary.

Notice that for \(g \in GL(V) \)

\[
g \left(\frac{1}{4} ST^{-1} + T \right) \bar{g}^t = \frac{1}{4} (gS\bar{g}^t)(gT\bar{g}^t)^{-1}(gS\bar{g}^t) + gT\bar{g}^t.
\]

Hence, by the spectral theorem for hermitian matrices, we may assume that

\[
\frac{1}{2} S = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} I_r & 0 \\ 0 & -I_s \end{pmatrix}.
\]

The stabilizer of \((1/2)S\) in \(GL(V)\) (under the above action) consists of matrices of the form

\[
g = \begin{pmatrix} h & B \\ 0 & C \end{pmatrix}, \quad hE\bar{h}^t = E, \quad \det h(C) \neq 0.
\]

Suppose we know that the lemma holds if \(d = r + s \) (i.e., if \((1/2)S = E\)). Let \(d > r + s \).

We shall write \(T \in \mathcal{H}^+ \) in a block form

\[
T = \begin{pmatrix} T_1 & T_2 \\ T_2^* & T_3 \end{pmatrix}
\]

as in (2.11). Notice that \(T_3 > 0 \). Take \(B = -hT_2T_3^{-1} \) in (2.11). Then

\[
gT\bar{g}^t = \begin{pmatrix} h(T_1 - T_2 T_3^{-1} T_2^*)\bar{h}^t & 0 \\ 0 & CT_3 \bar{C}^t \end{pmatrix}.
\]

Thus, elements of \(\mathcal{H}^+ \) are diagonalizable via the action of the stabilizer of \((1/2)S\).
(This shall be verified shortly for the case \((1/2)S = E\).) Hence, by (2.10) the map
(2.9) is surjective.

Suppose \(T, T' \in \mathcal{H}^+_S \) and

\[
\frac{1}{4} ST^{-1} S + T = \frac{1}{4} ST'^{-1} S + T'.
\]
Write T' in a block form as in (2.11):

$$T' = \begin{pmatrix} T'_1 & T'_2 \\ \overline{T'_2} & T'_3 \end{pmatrix}. $$

Then (2.13) implies that $T_2 = T'_2$ and $T_3 = T'_3$. Thus, the same g as in (2.12) gives

$$gT'\overline{g'} = \begin{pmatrix} h(T'_1 - T'_2T'_3^{-1}\overline{T'_2})\overline{h'} & 0 \\ 0 & CT_3\overline{C}_3 \end{pmatrix}. $$

By combining (2.12–2.14), we get

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} h(T'_1 - T'_2T'_3^{-1}\overline{T'_2})\overline{h'} & 0 \\ 0 & CT_3\overline{C}_3 \end{pmatrix}^{-1} \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} h(T'_1 - T'_2T'_3^{-1}\overline{T'_2})\overline{h'} & 0 \\ 0 & CT_3\overline{C}_3 \end{pmatrix} \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} h(T'_1 - T'_2T'_3^{-1}\overline{T'_2})\overline{h'} & 0 \\ 0 & CT_3\overline{C}_3 \end{pmatrix}^{-1} \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} h(T'_1 - T'_2T'_3^{-1}\overline{T'_2})\overline{h'} & 0 \\ 0 & CT_3\overline{C}_3 \end{pmatrix}. $$

Hence, by taking the terms in the upper-left corner, we see that

$$E((T'_1 - T'_2T'_3^{-1}\overline{T'_2}))^{-1}E + (T'_1 - T'_2T'_3^{-1}\overline{T'_2})$$

$$= E((T'_1 - T'_2T'_3^{-1}\overline{T'_2}))^{-1}E + (T'_1 - T'_2T'_3^{-1}\overline{T'_2}).$$

Therefore (by our assumption that the lemma holds for $d = r + s$),

$$T_1 - T_2T_3^{-1}\overline{T_2} = T'_1 - T'_2T'_3^{-1}\overline{T'_2}. $$

Thus, $T_1 = T'_1$ and consequently $T = T'$. Hence, the map (2.9) is injective.

From now on, we assume $d = r + s$. Let H denote the stabilizer of $(1/2)S = E$ in $GL(V)$. Let $\overline{B}^+ = \{b = \text{diag}(b_1, b_2, \ldots, b_d); b_1 \geq b_2 \geq \cdots \geq b_r > 0, b_{r+1} \geq b_{r+2} \geq \cdots \geq b_d > 0\}$. Let $U = \{g \in GL(V); g\overline{g'} = I_d\}$. By a well-known structure theorem for symmetric spaces [S, 7.1.3], the map

$$(2.15) \quad H \times \overline{B}^+ \times U \ni (h, b, u) \to hbu \in GL(V)$$
is surjective with the fiber $\{(hl, b, l^{-1}u); l \in \text{centralizer of } b \text{ in } H \cap U\}$. In particular, we see that the action of H on \mathcal{H}^+ is diagonalizable. Hence, (2.10) implies that the map (2.9) is surjective.

It remains to prove the injectivity. Suppose $T = h b^2 h'$ and $T' = h'h' b'^2 h'' \in \mathcal{H}_S^+$ satisfy (2.13). Then

$$E(h b^2 h')^{-1} E + h b^2 h' = E(h'h'^2 h'')^{-1} E + h'h'^2 h'' ,$$

so

$$E(b^2)^{-1} E + b^2 = (h^{-1}h')(E(b'^2)^{-1} E + b'^2)(h^{-1}h')'.$$

But E commutes with b and $E^2 = I_d$. Hence,

$$(2.16) \quad b^{-2} + b^2 = (h^{-1}h')(b'^{-2} + b'^2)(h^{-1}h')'.$$

Moreover, the condition $T, T' \in \mathcal{H}_S^+$ implies that $b_1 \geq b_2 \geq \cdots \geq b_r > l$ and $b_{r+1} \geq b_{r+2} \geq \cdots \geq b_d > 1$. Notice that if $y \geq x \geq 1$, then $y + y^{-1} \geq x + x^{-1}$.

Hence, $b^{-2} + b^2 \in B^+$ and $b'^{-2} + b'^2 \in B^+$. Therefore, (2.15) and (2.16) imply that $b^{-2} + b^2 = b'^{-2} + b'^2$ and $h^{-1}h' = l$ for some l in the centralizer of $b^{-2} + b^2$ in $H \cap U$. Notice that b can be written in terms of $c = b^{-2} + b^2$

$$b = \sqrt{\frac{c + \sqrt{c^2 - 4}}{2}} .$$

Hence, l commutes with b. Therefore, $T' = h'h'^2 h'' = hlb'^{-1} h' = h b^2 h' = T$. \square

Corollary 2.17. Let $(\mathcal{H} \times \mathcal{H}^+)^+ = \{(S, T) \in \mathcal{H} \times \mathcal{H}^+; T > (1/4)ST^{-1}S\}$. Then the map

$$(\mathcal{H} \times \mathcal{H}^+)^+ \ni (S, T) \mapsto \left(\frac{1}{4} ST^{-1}S + T + S, \frac{1}{4} ST^{-1}S + T - S\right) \in \mathcal{H}^+ \times \mathcal{H}^+$$

is a bijection.

Proof. Given $P, P' \in \mathcal{H}^+$, we want to show that there is a unique $(S, T) \in (\mathcal{H} \times \mathcal{H}^+)^+$ such that

$$\frac{1}{4} ST^{-1}S + T + S = P$$

$$\frac{1}{4} ST^{-1}S + T - S = P'.$$
OSCILLATOR CORRESPONDENCE OF ORBITAL INTEGRALS

Clearly, $S = (1/2)(P - P')$. Notice that $P + P' \pm (P - P') > 0$. Thus, $(1/2)(P + P') \in \mathcal{H}_\pm^+$. Hence, by (2.9) there is a unique $T \in \mathcal{H}_3^+$ such that $(1/4)ST^{-1}S + T = (1/2)(P + P')$. \(\square\)

Define a representation ρ of $GL(V)$ on the real vector space \mathcal{H} by

\[
\rho(g)S = gSg^t \quad (g \in GL(V), S \in \mathcal{H}).
\]

Corollary 2.19. Let dP denote a Lebesgue measure on \mathcal{H}. Then there is $\text{const} > 0$ such that for a test function ψ

\[
\int_{\mathcal{H}^+} \int_{\mathcal{H}^+} \psi(P, P') dP' dP = \text{const} \int_{(\mathcal{H} \times \mathcal{H}^+)^+} \psi \left(\frac{1}{4} ST^{-1}S + T + S, \frac{1}{4} ST^{-1}S + T - S \right) \left| \det_{\mathbb{R}} \left(1 - \rho \left(\frac{1}{2} ST^{-1} \right) \right) \right| dT dS.
\]

Proof. The derivative of the map (2.17) at (S, T) coincides with the following linear map:

\[
(\Delta S, \Delta T) \rightarrow \left(\frac{1}{4} \Delta S \cdot T^{-1}S + \frac{1}{4} S \cdot T^{-1} \cdot \Delta S - \frac{1}{4} ST^{-1} \cdot \Delta T \cdot T^{-1}S + \Delta T + \Delta S, \right.
\]

\[
\left. \frac{1}{4} \Delta S \cdot T^{-1}S + \frac{1}{4} S \cdot T^{-1} \cdot \Delta S - \frac{1}{4} ST^{-1} \cdot \Delta T \cdot T^{-1}S + \Delta T - \Delta S \right).
\]

After a linear transformation, the right-hand side becomes

\[
\left(\Delta S, \frac{1}{4} \Delta S \cdot T^{-1}S + \frac{1}{4} S \cdot T^{-1} \cdot \Delta S - \frac{1}{4} ST^{-1} \cdot \Delta T \cdot T^{-1}S + \Delta T \right).
\]

Hence, the determinant of the above is a constant multiple of the determinant of the following linear map:

\[
\Delta T \rightarrow \Delta T - \frac{1}{4} ST^{-1} \cdot \Delta T \cdot T^{-1}S = \left(1 - \rho \left(\frac{1}{2} ST^{-1} \right) \right) \Delta T. \quad \square
\]

The following lemma is well known, but for completeness we include a simple proof.

Lemma 2.20. Let $r = 2 \dim_{\mathbb{R}} \mathcal{H} / \dim_{\mathbb{R}} V$ (notice here that $\dim_{\mathbb{R}} \mathcal{H} = \dim_{\mathbb{R}} g$). Then, for $d' \geq d$, there is $\text{const} > 0$ such that for a test function ψ

\[
\int_{M_{d',d}(D)} \psi(x\mathbb{X}^t) dx = \text{const} \int_{\mathcal{H}^+} \psi(P) |\det_{\mathbb{R}} P|^{(d' - r)/2} dP.
\]
Proof. Let $g \in GL(V)$. Then
\[
\int_{M_{d,d}(D)} \psi(gx\bar{x}^t\bar{g}^t) \, dx = |\det_{\mathbb{R}} g|^{-d'} \int_{M_{d,d}(D)} \psi(x\bar{x}^t) \, dx
\]

and
\[
\int_{\mathcal{N}^+} \psi(g^t\bar{g}^t)|\det_{\mathbb{R}} g|^{(d'-r)/2} \, dP
\]
\[
= \int_{\mathcal{N}^+} \psi(P)|\det_{\mathbb{R}} g^{-1}P(\bar{g}^{-1})^{t}|^{(d'-r)/2}|\det_{\mathbb{R}} g|^{-r} \, dP
\]
\[
= |\det_{\mathbb{R}} g|^{-d'} \int_{\mathcal{N}^+} \psi(P)|\det_{\mathbb{R}} P|^{(d'-r)/2} \, dP. \quad \square
\]

Lemma 2.21. Let
\[
(g \times GL(V))^+ = \{(z, g) \in g \times GL(V); 4I_d > (\bar{g}^t)^{-1}Fzg^{-1}((\bar{g}^t)^{-1}Fzg^{-1})^t\}.
\]
Set
\[
M(z, g) = \left| \det_{\mathbb{R}} \left(\frac{1}{4}(\bar{g}^t)^{-1}Fzg^{-1}((\bar{g}^t)^{-1}Fzg^{-1})^t + 1 - (\bar{g}^t)^{-1}Fzg^{-1} \right) \right|^{(q-r)/2}
\]
\[
\times \left| \det_{\mathbb{R}} \left(\frac{1}{4}(\bar{g}^t)^{-1}Fzg^{-1}((\bar{g}^t)^{-1}Fzg^{-1})^t + 1 + (\bar{g}^t)^{-1}Fzg^{-1} \right) \right|^{(q-r)/2}
\]
\[
\times \left| \det_{\mathbb{R}} \left(1 - \rho \left(\frac{1}{2}(\bar{g}^t)^{-1}Fzg^{-1} \right) \right) \right| |\det_{\mathbb{R}}(g)|^{d'-r}.
\]
One can normalize all the measures involved so that for a test function $\phi \in C_c(W^{\max})$
\[
\int_W \phi(w) \, dw = \int_{(g \times GL(V))^+} \int_{L'} \phi(kg(\sigma_0(z))) \, dk \, M(z, g) \, dz \, dg.
\]
Proof. Define a function ψ on L by
\[
\psi \circ \tau_{\iota}(w) = \int_{L'} \phi(wk) \, dk.
\]
Since there is a matrix u such that $u\bar{u}^t = I_d$ and $uF\bar{u}^t = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$, (2.2) and
(2.20) imply that

\[\int_{\omega} \phi(w) \, dw = \int_{\omega} \psi \circ \tau_{i}(w) \, dw \]

\[= \text{const} \int_{M_{\delta, p}(D)} \int_{M_{\delta, q}(D)} \psi(x \bar{\xi} F, -y \bar{\eta} F) \, dy \, dx \]

\[= \text{const} \int_{\mathcal{H}^+} \int_{\mathcal{H}^+} \psi(PF, -P'F) |\text{det} \mathbb{R} P^{(p-r)/2} | \text{det} \mathbb{R} P'^{(q-r)/2} \, dP' \, dP. \]

By (2.19), the above is a constant multiple of

\[\int_{(\mathcal{H} \times \mathcal{H})^+} \psi \left(\left(\frac{1}{4} ST^{-1} S + T + S \right) F, -\left(\frac{1}{4} ST^{-1} S + T - S \right) F \right) \]

\[\times \left| \text{det} \mathbb{R} \left(\frac{1}{4} ST^{-1} S + T + S \right) \right|^{(p-r)/2} \]

\[\times \left| \text{det} \mathbb{R} \left(\frac{1}{4} ST^{-1} S + T - S \right) \right|^{(q-r)/2} \]

\[\times \left| \text{det} \mathbb{R} \left(1 - \rho \left(\frac{1}{2} ST^{-1} \right) \right) \right| \, dT \, dS. \]

Let us write \(S = zF^{-1} \) and \(T = (F^{-1})' \bar{g}'gF^{-1} \), as in (2.8). Then again by (2.20), the above is a constant multiple of

\[\int_{(g \times GL(V))^+} \psi(\tau_{i}(g(\sigma_{\delta}(z)))) \left| \text{det} \mathbb{R} \left(\frac{1}{4} zg^{-1}(\bar{g}')^{-1} z'^{t} + (F^{-1})^{-1} \bar{g}'gF^{-1} + zF^{-1} \right) \right|^{(p-r)/2} \]

\[\times \left| \text{det} \mathbb{R} \left(\frac{1}{4} zg^{-1}(\bar{g}')^{-1} z'^{t} + (F^{-1})^{-1} \bar{g}'gF^{-1} - zF^{-1} \right) \right|^{(q-r)/2} \]

\[\times \left| \text{det} \mathbb{R} \left(1 - \rho \left(\frac{1}{2} zg^{-1}(\bar{g}')^{-1} F'^{t} \right) \right) \right| \left| \text{det} \mathbb{R} g \right|' \, dg \, dz. \]

Using the relation

\[\text{det} \mathbb{R} (A + (F')^{-1} \bar{g}'gF^{-1}) = \text{det} \mathbb{R} (F'(\bar{g}')^{-1} AFg^{-1} + 1)|\text{det}(g)|^2, \]

one can transform (2.22) to obtain the integral formula of (2.21). \(\square \)
Finally, we make a specific choice of the matrix F:

$$ F = \begin{cases}
(0 & I_{d/2} \\
-I_{d/2} & 0) & \text{if } D = R \\
(i_{d} & 0) & \text{if } D = C \\
0 & 0 - i_{d+s} \\
i_{d} & \text{if } D = H.
\end{cases} $$

Also, let

$$ B^+ = \begin{cases}
\{b = \text{diag}(b_1, \ldots, b_d); b_1 = b_{d/2+1} > b_2 \\
\quad \quad = b_{d/2+2} > \cdots > b_{d/2} = b_d > 0\} & \text{if } D = R \\
\{b = \text{diag}(b_1, \ldots, b_d); b_1 > b_2 > \cdots > b_s > 0, \\
\quad \quad b_{s+1} > b_{s+2} > \cdots > b_d > 0\} & \text{if } D = C \\
\{b = \text{diag}(b_1, \ldots, b_d); b_1 > b_2 > \cdots > b_d > 0\} & \text{if } D = H.
\end{cases} $$

There is a function $\delta(b)$, $b \in B^+$, [S, 8.1.1] such that

$$ \int_{GL(V)} f(g) \, dg = \int_{U} \int_{B^+} \int_{G} f(ubh)\delta(b) \, du \, db \, dh, $$

(2.23) $\delta(b) \leq \text{const} \cdot (b_1^{d-1}b_2^{d-3} \cdots b_d^{d+1})^n, \quad n = \dim_{R}(D).$

Finally, we arrive at a precise formulation of the Theorem 1.6 (a).

Theorem 2.24. Let $(g \times B^+)^+ = \{(z, b) \in g \times B^+; 4I_{d} > (b^{-1}Fzb^{-1})(b^{-1}Fzb^{-1})'\}$. Let

$$ m(z, b) = \left| \det_{R} \left(\frac{1}{4} b^{-1}Fzb^{-1} \left(b^{-1}Fzb^{-1} \right)' + 1 - b^{-1}Fzb^{-1} \right) \right|^{(p-r)/2} $$

$$ \times \left| \det_{R} \left(\frac{1}{4} b^{-1}Fzb^{-1} \left(b^{-1}Fzb^{-1} \right)' + 1 + b^{-1}Fzb^{-1} \right) \right|^{(q-r)/2} $$

$$ \times \left| \det_{R} \left(1 - b^{-1}Fzb^{-1} \right) \right| \left| \det_{R} b \right|^{d-r} \delta(b). $$

Then, with appropriate normalization of all the measures involved,

$$ \int_{W} \phi(w) \, dw = \int_{G} \int_{(0 \times B^+)^+} \int_{L'} \phi(h \cdot \sigma_{g}(z) \cdot b^{-1}k^{-1}) \, dk \, m(z, b) \, db \, dz \, dh. $$

Proof. We apply the equation (2.23) to (2.21) by writing $g = ubh$ and then changing z to $h^{-1}zh$. \qed
Proof of Theorem 1.6. It remains to show Theorem 1.6 (b) and the last statement. Let \(\psi \) be a continuous rapidly decreasing function on \(g' \). Then

\[
\mathcal{A} \psi(z) = \int_{(g \times B^+)^+} \int_{L'} \psi \circ \tau_g (\sigma_g(z)b^{-1}k^{-1}) \, dk \, m(z, b) \, db.
\]

Since the function \(m \) is bounded on \((g \times B^+)^+\), it is clear from (2.7) that

\[
\mathcal{A} \psi(z) \leq \operatorname{const} \int_{B^+} \int_{L'} |\psi \circ \tau_g (\sigma_g(z)b^{-1}k^{-1})| |\det_{\mathbb{R}} b|^{d'-r} \delta(b) \, dk \, db
\]

\[
\times \operatorname{const}_N \int_{B^+} (1 + |zb^{-1}|)^{-N} (1 + |bF^{-1}b|)^{-N} |\det_{\mathbb{R}} b|^{d'-r} \delta(b) \, db.
\]

Notice that

\[
|zb^{-1}|^2 = |bFzb^{-1}|^2 = \sum_{i,j} b_i^2 |(Fz)_{i,j}|^2 b_j^{-2}
\]

\[
= \sum_i |(Fz)_{i,i}|^2 + \sum_{i<j} |(Fz)_{i,j}|^2 (b_i^2 b_j^{-2} + b_i^{-2} b_j^2)
\]

\[
\geq \sum_i |(Fz)_{i,i}|^2 + 2 \sum_{i<j} |(Fz)_{i,j}|^2 = |Fz|^2 = |z|^2.
\]

Further, the inequality (2.23) implies that for \(N > 0 \) large enough

\[
(2.26) \quad \int_{B^+} (1 + |bF^{-1}b|)^{-N} |\det_{\mathbb{R}} b|^{d'-r} \delta(b) \, db < \infty.
\]

Thus,

\[
|\mathcal{A} \psi(z)| \leq \operatorname{const}_N (1 + |z|)^{-N} \quad (z \in g).
\]

This verifies Theorem 1.6 (b).

If \(\psi \in C^\infty(g') \) and \(\operatorname{supp} \psi \cap \tau_g (W^{\max}) \) is compact, then we integrate over a compact subset of \((g \times B^+)^+\) in (2.25). The projection of this set on \(B^+ \) is also compact. Thus, we may take derivatives with respect to \(z \in g \) and estimate as above without appealing to the inequality (2.26). Hence, the last statement follows. \(\square \)

3. The case when \((, ,) \) is skew-symmetric and \(D = \mathbb{R} \) or \(\mathbb{C} \). In this section, \(D \) is equipped with the trivial involution. Let \(d' \geq 2d \) be positive integers with \(d' \) even. Let \(V = D^d \) and let \(V' = D^{d'} \). Fix a nonsingular matrix \(F \in M_d(\mathbb{R}) \) such that
$F = F' = F^{-1}$. Let

$$F' = \begin{bmatrix} 0 & 0 & I_d \\ 0 & F'' & 0 \\ -I_d & 0 & 0 \end{bmatrix}, \quad F'' = \begin{bmatrix} 0 & I_{d/2-d} \\ -I_{d/2-d} & 0 \end{bmatrix}.$$

Set

$$\langle u, v \rangle = u'^* F v, \quad \langle u', v' \rangle = u'^* F' v' \quad (u, v \in V; u', v' \in V').$$

Then \langle , \rangle is a nondegenerate symmetric form on V, and \langle , \rangle' is a nondegenerate skew-symmetric form on V'. The corresponding isometry groups and Lie algebras can be represented in terms of matrices as follows:

$$G = \{ g \in M_d(D); g'^* F g = F \}, \quad g = \{ z \in M_d(D); z'^* F + F z = 0 \},$$

$$G' = \{ g \in M_d(D); g'^* F' g = F' \}, \quad g' = \{ z \in M_d(D); z'^* F' + F' z = 0 \}.$$

Let $L' = \{ g \in G'; \overline{g} g = I_d \}$, where $g \rightarrow \overline{g}$ is the complex conjugation if $D = \mathbb{C}$, and is trivial otherwise. This is a maximal compact subgroup of G'. Let us view the quaternions as matrices

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}, \quad a, b \in \mathbb{C}.$$

Let $j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. We identify

$$\mathbb{C} \ni a \rightarrow \begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix} \in \mathbb{H}.$$

Then

$$\mathbb{H} = \mathbb{C} \oplus \mathbb{C} j, \quad aj = j \overline{a}, a \in \mathbb{C}.$$

Let

$$D' = \begin{cases} \mathbb{C} & \text{if } D = \mathbb{R} \\ \mathbb{H} & \text{if } D = \mathbb{C}. \end{cases}$$

If $D' = \mathbb{H}$, let $j \in D'$ be as in (3.3). If $D' = \mathbb{C}$, let $j \in D'$ be $\sqrt{-1}$. Then

$$D' = D \oplus D j.$$
Let $D' \ni a \to \bar{a} \in D'$ denote the standard nontrivial involution over \mathbb{R}. Let
\[
L = \{ g \in M_d(D'); \overline{g}^t jFg = jF \}, \quad \text{and}
\]
\[
I = \{ x \in M_d(D'); \overline{x}^t jF + jFx = 0 \}.
\]
Notice that if $G \cong O_{p,q}$, then $L \cong U_{p,q}$, and if $G \cong O_p(\mathbb{C})$, then $L \cong O_{2p}^\ast$.

Let $W = M_{d,d}(D)$. The groups G, G' act on W as indicated in the introduction. The moment maps $\tau_g : W \to g$, $\tau_i : W \to I$ and $\tau_{g'} : W \to g'$ are given explicitly by
\[
\tau_g(w) = wF'w'F, \quad \tau_i(w) = (wF'w + w\bar{w}'j)F, \quad \tau_{g'}(w) = F'wFw \quad (w \in W).
\]
As in (2.3), we have a decomposition
\[
W = M_{d}(D) \oplus M_{d,d-2d}(D) \oplus M_{d}(D)
\]
in terms of which we define a section of the map τ:
\[
\sigma(z) = \begin{pmatrix}
1/2 & z & 0 & F^{-1}
\end{pmatrix} \quad (z \in g).
\]
We identify $GL(V)$ with a subgroup of G' by a formula analogous to (2.5):
\[
GL(V) \ni g \to \begin{pmatrix}
g & 0 & 0 \\
0 & I_{d-2d} & 0 \\
0 & 0 & (g')^{-1}
\end{pmatrix} \in G'.
\]
Then, for $g \in GL(V)$ and $z \in g$,
\[
g(\sigma(z)) = \sigma(z) \cdot g^{-1} = \begin{pmatrix}
1/2 & zg^{-1} & 0 & F^{-1}g'
\end{pmatrix}.
\]
With the notation of (3.8), we have
\[
\tau_g(g(\sigma(z))) = z
\]
\[
\tau_i(g(\sigma(z))) = \begin{pmatrix}
1/4 & zg^{-1}(\overline{g}')^{-1}z' + Fg'\overline{g} - zgF
\end{pmatrix} jF
\]
\[
\tau_{g'}(g(\sigma(z))) = \begin{pmatrix}
1/2 & g'g^{-1} & 0 & gFg'
0 & 0 & 0 \\
0 & 0 & 0 \\
-1/4(g')^{-1}z'Fg^{-1} & 0 & -1/2(g')^{-1}z'g'
\end{pmatrix}.
With the notation of (3.9), let \(S = zF \) and let \(T = Fg^t\overline{g}F \). Then,

\[
\tau_i(g(\sigma_0(z))) = \left(\frac{1}{4} (Sj)T^{-1}(\overline{S})^t + T - Sj \right) jF = \left(\frac{1}{4} S(\overline{T})^{-1}\overline{S_t} + T - Sj \right) jF,
\]

(3.10)

\[S = -S', \quad T = \overline{T}', \quad T > 0. \]

Let \(\mathcal{S} = \{ S \in M_d(D) ; S = -S' \} \) be the space of skew-symmetric matrices of size \(d \). Let \(\mathcal{H}^+ = \mathcal{H}^+(D) \) be the set of positive hermitian matrices of size \(d \) as before. Similarly, we define \(\mathcal{H}^+(D') \).

Lemma 3.11. Let \((\mathcal{S} \times \mathcal{H}^+)^+ = \{(S, T) \in \mathcal{S} \times \mathcal{H}^+ ; T > (1/4)\overline{ST^{-1}}\overline{S_t} \} \). Then the map

\[
(\mathcal{S} \times \mathcal{H}^+)^+ \ni (S, T) \mapsto \frac{1}{4} \overline{ST^{-1}}\overline{S_t} + T - Sj \in \mathcal{H}(D')^+
\]

is a bijection.

Proof. The group \(GL(V) = GL(D^d) \subseteq GL(D^d) \) acts on \(\mathcal{S}, \mathcal{H}(D), \mathcal{H}(D') \) by

\[
g(S) = gSg^t, \quad g(T) = gTg^t, \quad g(P) = gPg^t \quad (g \in GL(V), S \in \mathcal{S}, T \in \mathcal{H}, P \in \mathcal{H}(D')).
\]

Moreover, we have the following formula:

\[
g \left(\frac{1}{4} \overline{ST^{-1}}\overline{S_t} + T - Sj \right) g^t = \frac{1}{4} (gSg')(\overline{gTg'})^{-1}(gSg')^t + (gTg') - (gSg')j.
\]

Clearly, the action of \(GL(V) \) on \(\mathcal{S} \times \mathcal{H}^+ \) preserves \((\mathcal{S} \times \mathcal{H}^+)^+ \). Fix \(S \in \mathcal{S} \). Given \(P \in \mathcal{H}^+(D') \) such that \(P - Sj \in \mathcal{H}^+(D') \), we will show that there is a unique \(T \in \mathcal{H}^+(D') \) such that

\[
(3.12) \quad \frac{1}{4} \overline{ST^{-1}}\overline{S_t} + T - Sj = P.
\]

Using the action of \(GL(V) \), we may assume that

\[
\frac{1}{2} S = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.
\]

The stabilizer of \((1/2)S \) in \(GL(V) \) consists of matrices of the form

\[
g = \begin{pmatrix} h & B \\ 0 & C \end{pmatrix}, \quad hEh^t = E, \ det(C) \neq 0.
\]
As in the proof of (2.9), we may reduce to the case \((1/2)S = E \) and complete the proof.

For \(g \in GL(V) \) and \(T \in \mathcal{H} \), set

\[
\rho(g)T = g\overline{T}g'.
\]

Then \(\rho(g) \in \text{End}_R(\mathcal{H}) \). As in (2.19), one can verify the following lemma.

Lemma 3.13. One can normalize the Lebesgue measures \(dQ, dT, dS \) on \(\mathcal{H}(D') \), \(\mathcal{L}, \mathcal{H}(D) \), respectively, so that for a test function \(\psi \)

\[
\int_{\mathcal{H}+}(D') \psi(Q) dQ = \int_{(\mathcal{L} \times \mathcal{H}^+)^+} \psi \left(\frac{1}{4} S(\overline{T})^{-1} (\overline{S})' + T - Sj \right)
\times \left| \text{det}_R \left(1 - \rho \left(\frac{1}{2} S(\overline{T})^{-1} \right) \right) \right| dT dS.
\]

Lemma 3.14. Let

\[
(g \times GL(V))^+ = \{(z, g) \in g \times GL(V); 4I_d > ((g')^{-1}Fzg^{-1})((g')^{-1}Fzg^{-1})' \}.
\]

Let \(r' = 2 \dim_R \mathcal{H}(D')/\dim_R(D^d) \) and let \(r = 2 \dim_R \mathcal{H}(D)/\dim_R(D^d) \). Set

\[
M(z, g) = \left| \text{det}_R \left(\frac{1}{4} (g')^{-1}Fzg^{-1}((g')^{-1}Fzg^{-1})' + 1 - (g')^{-1}Fzg^{-1}Fj \right) \right|^{d'/2-r'}
\times \left| \text{det}_R \left(1 - \rho \left(\frac{1}{2} (g')^{-1}Fzg^{-1} \right) \right) \right| \left| \text{det}_R(g) \right|^{d' - 2r' + r'}.
\]

One can normalize all the measures involved so that for a test function \(\phi \in C_c(W'^{\text{max}}) \),

\[
\int W \phi(w) dw = \int_{(g \times GL(V))^+} \int_{L'} \phi(kg(\sigma_{\phi}(z))) dk M(z, g) dz dg.
\]

Proof. Define a function \(\psi \) on \(L' \) by

\[
\psi(w) = \int_{L'} \phi(wk) dk.
\]

Then by (3.5) and (3.13),

\[
\int W \phi(w) dw = \int W \psi \circ \tau_1(w) dw
\]

\[
\int W \psi((wF'w'j + w\overline{w}'jF) dw = \int W \psi(w(1 - F'j)\overline{w}'jF) dw.
\]
Set \(D = \begin{pmatrix} 0 & I_{d'/2-d} \\ I_d & 0 \end{pmatrix} \) so that \(F' = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix} \); see (3.1). There is an isomorphism of vector spaces

\[
M_{d,d'}(D) = M_{d,d'/2}(D) \oplus M_{d',d/2}(D) \ni w = (A, B) \rightarrow A + BDj \in M_{d,d'/2}(D'),
\]

and the formula

\[
w(1 - F'j)\bar{w}' = (A + BDj)(\bar{A} + BD\bar{j})'.
\]

Thus, by Lemmas 2.20 and 3.13:

\[
\int \phi(w) \, dw = \int_{M_{d,d'/2}(D')} \psi(x\bar{x}'jF) \, dx
\]

\[
= \int_{\mathfrak{g}^+(D')} \psi(PjF) |\det_R P|^{(d'/2-r)/2} \, dP
\]

\[
= \int_{(g \times \mathfrak{g}^+)^+} \psi \left(\left(\frac{1}{4} S(\bar{T})^{-1} \bar{S} + T - Sj \right) jF \right)
\]

\[
\times \left| \det_R \left(\frac{1}{4} S(\bar{T})^{-1} \bar{S} + T - Sj \right) \right|^{(d'/2-r)/2}
\]

\[
\times \left| \det_R \left(1 - \rho \left(\frac{1}{2} S(\bar{T})^{-1} \right) \right) \right| \, dT \, dS.
\]

If we write \(S = zF \) and \(T = Fg'\bar{g}F \) as in (3.10), then, again by Lemma 2.20,

\[
\int \phi(w) \, dw = \int_{(g \times GL(V))} \psi \left(\left(\frac{1}{4} zg^{-1}(\bar{g}')^{-1} z' + Fg'\bar{g}F - zFj \right) jF \right)
\]

\[
\times \left| \det_R \left(\frac{1}{4} zg^{-1}(\bar{g}')^{-1} z' + Fg'\bar{g}F - zFj \right) \right|^{(d'/2-r)/2}
\]

\[
\times \left| \det_R \left(1 - \rho \left(\frac{1}{2} zg^{-1}(\bar{g}')^{-1} F \right) \right) \right| |\det_R g'|^r \, dg \, dz,
\]

and the lemma follows. □

Let us make a specific choice

\[
F = \begin{cases}
I_p \quad & \text{if } D = R \\
0 \quad & \\
0 \quad & \\
I_q \quad & \\
I_d \quad & \text{if } D = C.
\end{cases}
\]
Let

\[B^+ = \begin{cases} \{ b = \text{diag}(b_1, \ldots, b_d); b_1 > \cdots > b_p > 0, b_{p+1} > \cdots > b_d > 0 \} & \text{if } D = \mathbb{R} \\ \{ b = \text{diag}(b_1, \ldots, b_d); b_1 > \cdots > b_d > 0 \} & \text{if } D = \mathbb{C} \end{cases} \]

There is a function \(\delta(b), b \in B^+, [S, 8.1.1] \) such that

\[
\int_{GL(V)} f(g) \, dg = \int_{B^+} \int_{G} \int_{B^+} f(ubh) \delta(b) \, du \, db \, dh, \quad \text{and} \quad \delta(b) \leq \text{const} \cdot (b_1^{d-1}b_2^{d-3} \cdots b_d^{-d+1})^n, \quad n = \text{dim}_R(D).
\]

Finally, we arrive at a precise formulation of Theorem 1.6 (a), which can be verified the same way as Theorem 2.24.

Theorem 3.15. Let \((g \times B^+)^+ = \{(z, b) \in g \times B^+; 4I_d > (b^{-1}Fzb^{-1})(\overline{b^{-1}Fzb^{-1}})^t\}. \) Let

\[
m(z, b) = \left| \det_{\mathbb{R}} \left(\frac{1}{4} b^{-1}Fzb^{-1}(\overline{b^{-1}Fzb^{-1}})^t + 1 - b^{-1}Fzb^{-1}Fj \right) \right|^{(d'/2-r')/2} \times \left| \det_{\mathbb{R}} \left(1 - \rho \left(\frac{1}{2} b^{-1}Fzb^{-1} \right) \right) \right| \left| \det_{\mathbb{R}} b \right|^{d'-2r'} \delta(b).
\]

Then,

\[
\int_{W} \phi(w) \, dw = \int_{G} \int_{(g \times B^+)^+} \int_{L'} \phi(h \cdot \sigma_g(z) \cdot b^{-1}k^{-1}) \, dk \, m(z, b) \, db \, dz \, dh.
\]

As before,

\[
(3.16) \quad \mathcal{A}\psi(z) = \int_{(g \times B^+)^+} \int_{L'} \psi \circ \tau_{g}(\sigma_g(z)b^{-1}k^{-1}) \, dk \, m(z, b) \, db.
\]

Hence, the proof of the remaining statements of Theorem 1.6 is the same as in the previous case.

References

DASZKIEWICZ: Institute of Mathematics, N. Copernicus University, 87-100 Toruń, Poland
PRZEBINDA: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA